Course Outline Structure for the Interdepartmental Postgraduate Programme (MSc Program) Microsystems and Nanodevices

COURSE OUTLINE

(1) GENERAL INFORMATION

SCHOOL	OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES				
DEPARTMENT	OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES				
LEVEL OF STUDIES	POSTGRADUATE				
MSc PROGRAM	MICROSYSTEMS AND NANODEVICES				
COURSE CODE	9950		SEMESTER 1		
COURSE TITLE	STATISTICAL PHYSICS				
INDEPENDENT TEACH	CHING ACTIVITIES WEEKLY				
In cases where credits are awarded to	to discrete parts of the course (e.g.,		TEACHING		FCTS
Lectures, Laboratory Exercises, etc.), sp	becify them. If credits are awarded HOURS			2010	
as a whole, specify weekly teach	ing hours and total credits.		7.5		
	Lectures – Exercises		4		7.5
	Assignments				
(Additional rows may be added if necessary. Detailed descriptions of					
teaching organization and methods are	provided in section (d).)				
COURSE ITP	GENERAL BACKGROUND (TOR CORE COURSES)				
specialization	, ,				
skill developmer					
PREREQUISITES	: [REQUIRED BACKGROUND KNOWLEDGE]:				
	KNOWLEDGE EQUIVALENT TO A GRADUATE IN PHYSICS				
LANGUAGE OF INSTRUCTION and	d GREEK OR ENGLISH				
EXAMINATION	l :				
COURSE AVAILABLE TO ERASMU	S NO				
STUDENT	S				
COURSE WEBSITE (URL	https://helios.ntua.gr/course/index.php?categoryid=197				
	https://helios.ntua.gr/course/view.php?id=4102				

(2) LEARNING OUTCOMES

Learning Outcomes

This section describes the learning outcomes of the course, specifying the knowledge, skills, and competencies at the appropriate level that students will acquire upon successful completion of the course. Refer to Appendix A:

• Description of the Level of Learning Outcomes for each cycle of studies according to the European Higher Education Area Qualifications Framework

- Descriptive Indicators for Levels 6, 7, & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B.
- Concise Guide to Writing Learning Outcomes

Knowledge:

The course focuses on the microscopic study of macroscopic systems. For a system in equilibrium, we derive general conclusions from microscopic properties, laying the foundations of the field of Statistical Physics. This microscopic approach provides all the results of Thermodynamics and allows us to calculate macroscopic parameters based on the microscopic properties of the system.

Essential components for such an analysis include defining the system's state, the concept of the statistical ensemble, the assumption of equal a priori probabilities, and probability calculations.

Key concepts include:

- Statistical weight Ω(E): Number of accessible states of the system within a specific energy range (between E and E+δE).
- Interactions between macroscopic systems (thermal, mechanical, general).
- Statistical thermodynamics and equilibrium conditions between interacting macroscopic systems.
- Microcanonical, canonical, and grand canonical distributions.
- Paramagnetism, Gibbs paradox.
- Quantum theory of the statistical ensemble: The density matrix.
- Quantum statistics of ideal gases (Bose-Einstein statistics, photon statistics, Fermi-Dirac statistics) and the classical limit.
- Conductivity electrons in metals, Pauli paramagnetism.
- Bose-Einstein condensation, black body radiation.
- Ferromagnetism, mean field theory. The Ising model

<u>Skills</u>:

Upon successful completion of the course, the student will be able to:

- Understand that Classical Statistical Physics can be derived Quantum Statistical Mechanics as a mathematical approximation (integrals instead of sums over microstates).
- Explain that knowledge of the quantum structure of a system, as represented by the Hamiltonian *H*, is essential for the study of any macroscopic system.
- Describe the "specifications" needed for the construction of a macroscopic system, the concept of the statistical ensemble, and accessible states.
- Understand the differences between Fermi-Dirac and Bose-Einstein statistics and solve related problems.

General Competencies

Considering the general competencies that graduates are expected to acquire (as stated in the Diploma Supplement), which competencies does this course aim to develop?

Data search, analysis, and synthesis, utilizing necessary technologies Adaptability to new situations Decision-making Independent work (primarily through assignments completed at home) Teamwork Working in an international environment Working in an interdisciplinary environment Generation of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Exhibiting social, professional, and ethical responsibility and sensitivity to gender issues Critical and self-critical thinking Promotion of free, creative, and inductive thinking More...

Competencies:

Upon successful completion of the course, students will develop the ability to:

- Work independently, especially through home assignments which can help them clarify key topics.
- Understand concepts related to macroscopic systems.
- Formulate questions necessary to investigate the behavior of macroscopic systems.
- Realize that problem-solving in Physics (and beyond) requires reaching concrete results and verifying their consistency.

(3) COURSE CONTENT

Classical Statistical Mechanics. Fundamental principles, micro-canonical ensemble, phase space, ergodic hypothesis, equilibrium, entropy, classical ideal gas, mixture entropy and Gibbs paradox. Canonical and grand canonical ensemble. Canonical ensemble, partition function, energy fluctuations in the canonical ensemble, equipartition theorem, ideal gas. Grand canonical ensemble, Gibbs entropy, ideal gas, chemical reactions. Quantum Statistical Mechanics. Fundamental principles, density matrix, ensembles in quantum statistical mechanics, ideal Fermi gas, Landau diamagnetism, Pauli paramagnetism, ideal Bose gas, photons, phonons, Bose-Einstein condensation, Bose-Fermi-Boltzmann gas comparisons. Interacting systems and phase transformation. Examples of interacting systems, van der Waals liquids, gas-liquid transitions, vdW state equations, critical points, failure of vdW equation, mean field theory for phase transitions, Landau approximation and order parameter, Polymers, Ising model, mean field approximation and ferromagnetism. Field theory techniques. Landau theory for phase transitions, failure of mean field theory. Systems under external excitations. Linear response theory, generalized susceptibilities, non-equilibrium statistical physics, Boltzmann equation and transport properties. Special subjects on statistical physics

(4) TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD In person, Distance Learning etc.	In-person. In cases of extraordinary circumstances, the course is offered via distance learning.
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT) Use of Information and Communication	ICT is used for communication with students. Lecture notes and assignments are sent to students (via the online platform Helios or email). Students may submit solutions of problems in person during
Training, Communication with Students	class or via email.

ORGANIZATION OF TEACHING	Activity	Semester Workload		
A detailed description of the teaching methods	Lectures	13*4=52 hours		
and approaches used in the course, which may include:	Study	13*4=52 hours		
include.	Home assignments	10*3=30 hours		
Lectures, Seminars, Laboratory Exercises,	Laboratory			
Fieldwork, Study and Analysis of Bibliography, Tutorials, Internships, Clinical Exercises, Art Workshops, Interactive Teaching, Educational Visits, Project Development, Report	Completion/Presentation			
	of Project			
	Educational visits			
Writing/Assignments, Artistic Creation.	Examinations	4 hours		
The student's study hours for each learning				
activity, as well as hours of independent study,				
are outlined in accordance with ECTS principles.	Total Course Load	138 hours		
STUDENT ASSESSMENT	Language of Assessment: Greek or English			
Description of the Assessment Process	(for Erasmus students: English)			
Language of Assessment, Assessment Methods, Formative / Summative Assessment Methods, Multiple-choice tests. Short-answer auestions.	Midterm exams: 60% of the final grade			
Essay-style questions, Problem-solving exercises, Written assignments, Reports, Oral examinations, Public presentations, Inhoratory	Final Examination (problem-solving): 40% of the final grade			
work, Clinical patient examinations, Artistic	These criteria are explicitly referenced on the Helios			
interpretations, Other methods, as appropriate	electronic platform.			
The assessment criteria are clearly defined and provided to students, ensuring transparency in the evaluation process. These criteria are accessible through the course's online platform where students can review them at any time.				

(5) RECOMMENDED BIBLIOGRAPHY

Statistical Physics, F. Mandl	Wiley
Statistical Physics, L. D. Landau, E, M. Lifsh	itz Pergamon Press
Statistical Mechanics, P. K. Pathria	Elsevier
Statistical Mechanics, K. Huang	John Wiley

Lecture material (approximately 250 slides) is available through the Helios electronic platform of NTUA.