COURSE OUTLINE

(1) GENERAL INFORMATION

SCHOOL	SCHOOL OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES			
DEPARTMENT	SCHOOL OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES			
LEVEL OF STUDIES	POSTGRADUATE			
MSc PROGRAM	MICROSYSTEMS AND NANODEVICES			
COURSE CODE	9952	9952 SEMESTER 1		
COURSE TITLE	PHYSICS OF SEMICONDUCTING MATERIALS AND DEVICES			
INDEPENDENT TEACHING ACTIVITIES In cases where credits are awarded to discrete parts of the course (e.g., Lectures, Laboratory Exercises, etc.), specify them. If credits are awarded as a whole, specify weekly teaching hours and total credits.			WEEKLY TEACHING HOURS	ECTS
Lectures – Exercises			4	7.5
Laboratory			1	
(Additional rows may be added if necessary. Detailed descriptions of				
COURSE TYPE	GENERAL BACKGROUND (for Core Courses)			
general background, specialized background, specialization, skill development			,	
PREREQUISITES:	[REQUIRED BACKGROUND KNOWLEDGE]:			
	Quantum Mechanics, Statistical Physics, Condensed Matter Physics, Electromagnetism			
LANGUAGE OF INSTRUCTION and EXAMINATION:	GREEK			
COURSE AVAILABLE TO ERASMUS STUDENTS	YES (offered in English as a reading course).			
COURSE WEBSITE (URL)	https://helios.ntua.gr/course/view.php?id=3004			

(2) LEARNING OUTCOMES

Learning Outcomes

This section describes the learning outcomes of the course, specifying the knowledge, skills, and competencies at the appropriate level that students will acquire upon successful completion of the course.

Refer to Appendix A:

- Description of the Level of Learning Outcomes for each cycle of studies according to the European Higher Education Area Qualifications Framework
- Descriptive Indicators for Levels 6, 7, & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B.
- Concise Guide to Writing Learning Outcomes

Knowledge:

This course focuses on the physical properties (structural, electrical, crystallodynamic, optical, and optoelectronic) of semiconductor materials and related devices. Beginning with the band structure of materials, it explores the phenomena of intrinsic and extrinsic carriers in homogeneous solid materials. The course then examines phenomena in heterogeneous systems and interfaces, such as p-n junctions, metal-semiconductor contacts, MOS structures, and transistors. The latter part of the course (over 50%) is dedicated to the study of low-dimensional systems, and quantum effects and systems, combining semiconducting, superconducting and topological materials ad effects including quantum wells, quantum wires, two-dimensional electron gases, layered materials, and semiconductor-superconductor contacts. Emphasis is placed on the electronic/electrical, optical, and magnetic properties of these low-dimensional systems, providing an in-depth understanding

of advanced semiconductor physics and applications.

<u>Skills</u>:

Upon successful completion of the course, the student will be able to:

- Understand the concept of different charge carriers in a semiconductor (electrons and holes), their dispersion relations, and their effective masses.
- Comprehend the concept of density of states and its dependence on the topology (dimensions) of the system.
- Explain the difference between intrinsic and extrinsic semiconductors and their behavior as a function of temperature.
- Calculate the Fermi level in intrinsic and extrinsic systems, as a function of temperature and other system parameters.
- Determine electrical characteristics of a given semiconductor device, including contact potential, carrier concentrations, and currents.
- Generate characteristic voltage-current curves in semiconductor circuits.
- Understand the role of artificial boundary/periodic conditions in low-dimensional systems and the coexistence of continuous and discrete energy spectra.
- Recognize the interaction of low-dimensional electronic systems with a static electric or magnetic field or with an electromagnetic wave of optical frequencies.

General Competencies

Considering the general competencies that graduates are expected to acquire (as stated in the Diploma Supplement), which competencies does this course aim to develop?

Data search, analysis, and synthesis, utilizing necessary	Generation of new research ideas
technologies	Project design and management
Adaptability to new situations	Respect for diversity and multiculturalism
Decision-making	Respect for the natural environment
Independent work (primarily through assignments	Exhibiting social, professional, and ethical responsibility and sensitivity to
completed at home)	gender issues
Teamwork	Critical and self-critical thinking
Working in an international environment	Promotion of free, creative, and inductive thinking
Working in an interdisciplinary environment	

Competencies:

Upon successful completion of the course, students will develop the ability to:

- Work Independently (and secondarily in teams, encouraged by collaborative problemsolving exercises).
- Select Appropriate Physical Parameters/Variables that define a physical/scientific problem.
- Formulate a Physical/Scientific/Technological Problem in Mathematical Terms, translating complex concepts into mathematical language.
- Search, Analyze, and Synthesize Data and Information, adapting them to specific scientific problems with necessary and reasonable approximations.
- Combine Knowledge and Skills for the analysis of complex problems, often using suitable approaches and approximations.

(3) COURSE CONTENT

Course Modules

Unit-A

Bulk semiconductors. Band structure: Direct – indirect energy gap. Electron-hole dispersion relations and the effective mass at band-extreme points. Excitons. Density of States in 1-, 2-, 3- dimensions and carrier concentration. Fermi level of intrinsic semiconductors. Fermi level of extrinsic semiconductors. Majority and minority carriers. Fermi level of heterogeneous systems and band- alignment. Build-in contact potential. Coupled quantum wells. Super-lattices. Minibands mini-gaps and density of states. Quantum wires and Density of States **Unit-B**

Carrier Transport phenomena. P-n junction: electrostatics, current-voltage characteristic and modeling. Metal-semiconductor junction: Ohmic and Schottky contacts. MOS two-terminal device: electrostatics, capacitance-voltage characteristic and modeling. Transistor MOSFET: current-voltage characteristics and modeling.

Unit-C

Low-dimensional systems and characteristic-length-time scales. Band alignment in heterogeneous systems and the formation of quantum wells. Tetragonal-trigonal-parabolic quantum wells. Continuous spectrum of quantum wells and transport properties. Reflection and Transmission matrices. Electric and Magnetic field in low-dimensional systems. Quantum Hall effect. Bohm-Aharonov effect. Optical absorption in quantum wells. Fullerenes. Carbon nanotubes. Graphene (structural and electronic properties, Dirac particles). Magnetic properties, spin transport, applications. Superconductivity: basic properties, Josephon junctions (DC and AC), type I and II superconductors, theories London, Ginzburg-Landau and BCS, high temperature superconductors, applications. Topological materials and Berry phase

TEACHING METHOD In person, Distance Learning etc.	In person		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT) Use of Information and Communication Technologies (ICT) in Lecturing, Laboratory Training, Communication with Students	Course Notes, Assignments for Home Study (Assignments are provided by the lecturer, and students are required to submit completed work.)		
ORGANIZATION OF TEACHING	Activity	Semester Workload	
A detailed description of the teaching methods and approaches used in the course, which may include:	Lectures Study	13x4=52 hours 13x4=52 hours	
Lectures, Seminars, Laboratory Exercises, Fieldwork, Study and Analysis of Bibliography, Tutorials, Internships, Clinical Exercises, Art Workshops, Interactive Teaching, Educational Visits, Project Development, Report	Home Assignments/Exercises	10x3=30 hours	
	Laboratory	0	
	Completion/Presentation of Project	10x3=30 hours	
	Educational Visits	0	
Writing/Assignments, Artistic Creation.	Examinations	3 hours	
The student's study hours for each learning activity, as well as hours of independent study, are outlined in accordance with ECTS principles.	Total Course Load	167 hours	
STUDENT ASSESSMENT	Language of Assessment: Greek		
Description of the Assessment Process	(for Erasmus students: English)		
Language of Assessment, Assessment Methods, Formative / Summative Assessment Methods, Multiple-choice tests, Short-answer questions,	Home Assignments: 10% of the final grade		
Essay-style questions, Problem-solving	Written Examination (problem-so	ving): 80% of the final grade	
exercises, Written assignments, Reports, Oral examinations, Public presentations, Laboratory work, Clinical patient examinations, Artistic interpretations, Other methods, as appropriate	Completion/Presentation of Project 10% of the final grade		
The assessment criteria are clearly defined and provided to students, ensuring transparency in the evaluation process. These criteria are	Explicit mention of these assessment criteria will be available on the Helios platform.		

(4) TEACHING AND LEARNING METHODS - ASSESSMENT

accessible through the course's online platform where students can review them at any time.

(5) RECOMMENDED BIBLIOGRAPHY

Recommended Bibliography

Review Literature – Properties of Semiconductors

- S. M. Sze, Semiconductor Devices, Physics and Technology, Wiley, NY, 1985
- B. G. Streetman, S. Banerjee, *Solid State Electronic Devices*, Prentice Hall, UK, 2000
- S. O. Kasap, *Principles of Electronic Materials and Devices*, McGraw Hill, NY, 2002 [Also available in Greek translation from Papasotiriou Publications]
- Η. Ibach, Η. Luth, *Φυσική Στερεάς Κατάστασης* (Solid State Physics), Ziti Publications, 2012

Bibliography for Low-Dimensional Semiconductor Systems

- M. J. Kelly, *Low-Dimensional Semiconductors (Materials, Physics, Technology, Devices)*, Oxford University Press, 1995
- P. K. Basu, Theory of Optical Processes in Semiconductors Bulk and Microstructures, Oxford University Press, 1997
- D. K. Ferry, S. M. Goodnick, *Transport in Nanostructures*, Cambridge University Press, 1997
- J. H. Davies, *The Physics of Low-Dimensional Semiconductors An Introduction*, Cambridge University Press, 1998
- V. M. Mitin, V. A. Kochelap, M. A. Stroscio, *Quantum Heterostructures Microelectronics* and Optoelectronics, Cambridge University Press, 1999
- P. Harrison, *Quantum Wells, Wires, and Dots: Theoretical and Computational Physics,* John Wiley & Sons, 2001
- E. L. Wolf, Nanophysics and Nanotechnology, Wiley, 2004
- Z. Gaburro, L. Pavesi, Nanostructured Silicon for Photonics, Trans Tech Publications, 2005
- G. W. Hanson, Fundamentals of Nanoelectronics, Pearson Prentice Hall, 2008