COURSE OUTLINE

(1) GENERAL INFORMATION

SCHOOL				
DEPARTMENT	SCHOOL OF APPLIED MATHEMATICAL AND PHYSICAL SCIENCES			
LEVEL OF STUDIES	POSTGRADUATE			
MSc PROGRAM	MICROSYSTEMS AND NANODEVICES			
	MATERIALS SCIENCE AND TECHNOLOGY			
	PHYSICS AND TECHNOLOGICAL APPLICATIONS			
COURSE CODE	9967 SEMESTER 2			
COURSE TITLE	MAGNETISM AND MAGNETIC MATERIALS			
INDEPENDENT TEACHING ACTIVITIES In cases where credits are awarded to discrete parts of the course (e.g., Lectures, Laboratory Exercises, etc.), specify them. If credits are awarded as a whole, specify weekly teaching hours and total credits.			WEEKLY TEACHING HOURS	ECTS
	Lectu	ires – Exercises	2	6
		Laboratory	1	
		Assignments	0	
(Additional rows may be added if necessary. Detailed descriptions of teaching organization and methods are provided in section (d).)				
COURSE TYPE general background, specialized background, specialization, skill development	SPECIALIZED E			
PREREQUISITES:	[REQUIRED BACKGROUND KNOWLEDGE]: Quantum Theory of Matter, Statistics, Electromagnetism, Differential Equations			
LANGUAGE OF INSTRUCTION and EXAMINATION:	GREEK			
COURSE AVAILABLE TO ERASMUS STUDENTS	YES (offered in English as a reading course).			
COURSE WEBSITE (URL)	https://helios.ntua.gr/course/view.php?id=3020			

(2) LEARNING OUTCOMES

Learning Outcomes

This section describes the learning outcomes of the course, specifying the knowledge, skills, and competencies at the appropriate level that students will acquire upon successful completion of the course.

Refer to Appendix A:

- Description of the Level of Learning Outcomes for each cycle of studies according to the European Higher Education Area Qualifications Framework
- Descriptive Indicators for Levels 6, 7, & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B.
- Concise Guide to Writing Learning Outcomes

Knowledge:

By attending the course, students will acquire knowledge related to:

- The origins of magnetism and the fundamental properties of magnetic materials, with emphasis in ferromagnetic materials
- Technologies for the fabrication and characterization of magnetic materials
- Design principles and applications of magnetic materials in sensors, actuators, and systems

<u>Skills</u>:

Upon completing the course, students are expected to be able to:

• Apply methods for calculating the fundamental properties and structure of magnetic

materials.

- Understand the operating principles underlying the use of magnetic materials insensors, actuators, and systems.
- Employ techniques to tailor the properties of magnetic materials given a specific application

General Competencies

Considering the general competencies that graduates are expected to acquire (as stated in the Diploma Supplement), which competencies does this course aim to develop?.
Data search, analysis, and synthesis, utilizing necessary technologies

technologies	Project design and management	
Adaptability to new situations	Respect for diversity and multiculturalism	
Decision-making	Respect for the natural environment	
Independent work (primarily through assignments	Exhibiting social, professional, and ethical responsibility and sensitivity to	
completed at home)	gender issues	
Teamwork	Critical and self-critical thinking	
Working in an international environment	Promotion of free, creative, and inductive thinking	
Working in an interdisciplinary environment		

Competencies:

Successful completion of the course develops the ability to:

- Search for, analyze, and synthesize data and information, utilizing appropriate technologies.
- Work collaboratively through group assignments.
- Select appropriate physical parameters/variables that define a physical/scientific/technological problem.
- Formulate physical/scientific/technological problems in mathematical terms.
- Integrate knowledge and skills to: (a) analyze complex problems, or (b) choose suitable tools, methods, and approaches to simulate and understand magnetic phenomena.

(3) COURSE CONTENT

Theory

- 1. Introduction to magnetism (origins of magnetism, magnetostatics, diamagnetism, paramagnetism, ferromagnetism)
- 2. The ferromagnetic structure (quantum magnetic moments, magnetic order, short & long range magnetic interaction thermodynamic approach)
- **3.** The magnetization process (magnetic domain wall movement and magnetic domain rotation, parametric dependence of magnetization, families of ferromagnetic materials)
- 4. Magnetic phenomena (inductive effects, magnetostriction, magneto-transport effects, magneto-optic effects, other magnetic effects)
- 5. Magnetic characterization technologies (magnetization loop, magnetostriction loop, magneto-resistance loop, magneto-optic dependence, parametric dependence)
- 6. Metallic magnetic alloys (Fe, Co, Ni, classic magnetic compounds, tailoring of magnetic properties)
- 7. Magnetic oxides (spinnels, ferrites, orthoferrites, garnets, magnetic semiconductors)
- 8. Special families of magnetic materials (2-d and 1-d magnetic materials, rapidly quenched materials, magnetic powders)
- 9. Superconductivity and superconducting materials (quantum theory of superconductivity, superconducting materials, superconducting effects and devices)
- **10.** Sensors and transducers (mechanical sensors, magnetometers, other sensors)
- 11. Read & write information (recording media, recording technology, NVMRAMs)
- 12. Electromechanical magnetic systems (macro & micro systems, applications)

Lab courses:

- 1. Magnetization loop, magnetostriction loop, magneto-resistance loop
- 2. Linear variable differential transformer
- 3. Fluxgate magnetometers (classic fluxgates, orthogonal fluxgates, rotating field fluxgates)
- 4. Magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance
- 5. Magnetostrictive delay lines, sensors applications
- 6. Barkhausen noise
- 7. Steel health monitoring by stress tensor distribution monitoring in steels
- 8. Read and write information, non-volatile RAMs

Permanent magnetic and superconductors

(4) TEACHING AND LEARNING METHODS - ASSESSMENT

TEACHING METHOD In person, Distance Learning etc.	In person		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT) Use of Information and Communication Technologies (ICT) in Lecturing, Laboratory	Course Notes, Assignments for Home Study (Assignments are provided by the lecturer, and students are required to submit completed work)		
Training, Communication with Students			
ORGANIZATION OF TEACHING	Activity	Semester Workload	
A detailed description of the teaching methods and approaches used in the course, which may include:	Lectures	13x3=39 hours	
	Study	13x3=39 hours	
	Home Assignments/Exercises	13x3=39 hours	
Lectures, Seminars, Laboratory Exercises,	Laboratory	13x1=13 hours	
Fieldwork, Study and Analysis of Bibliography, Tutorials, Internships, Clinical Exercises, Art Workshops, Interactive Teaching, Educational	Completion/Presentation of Project	13x2=26 hours	
Visits, Project Development, Report	Educational Visits	0	
Writing/Assignments, Artistic Creation.	Examinations	3 hours	
The student's study hours for each learning activity, as well as hours of independent study, are outlined in accordance with ECTS principles.	Total Course Load	146	
STUDENT ASSESSMENT	Language of Assessment: Greek		
Description of the Assessment Process	(for Erasmus students: English) Homework (Problem Solving): 10% of the final grade Laboratory Reports: 30% of the final grade		
Language of Assessment, Assessment Methods, Formative / Summative Assessment Methods, Multiple-choice tests, Short-answer questions,			
Essay-style questions, Problem-solving exercises, Written assignments, Reports, Oral			
examinations, Public presentations, Laboratory work, Clinical patient examinations, Artistic interpretations, Other methods, as appropriate	Written Examination or Completion/Presentation of an Alternative Project: 60% of the final grade		
The assessment criteria are clearly defined and provided to students, ensuring transparency in the evaluation process. These criteria are accessible through the course's online platform where students can review them at any time.			

(5) RECOMMENDED BIBLIOGRAPHY

Review Bibliography

- Sushin Chikazumi, Physics of Ferromagnetism, ISBN-13: 978-0882756622
- Amikam Aharoni, Introduction to the Theory of Ferromagnetism (International Series of Monographs on Physics)
- J. M. D. Coey, Magnetism and Magnetic Materials, ISBN-13: 978-0521816144